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Introduction____________________________
The interferon regulatory factor (IRF) family consists of 

nine members: IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, 
IRF8, and IRF9 [1]. In the 1980s, these proteins were 
described as transcriptional regulators of type I interferons 
(IFNs), including Ifnb and Ifna genes. The function of IRF 
and the production of IFNβ and IFNα form the first line of 
defense against viral infection. Type I IFN promotes 
degradation of viral DNA/RNA, inhibits viral replication 
and particle assembly, and enhances apoptosis in infected 
cells. It also enhances the differentiation of dendritic cells 
(DCs) and polarization of TH1 to enhance the antiviral 
immune response [2, 3]. The importance of these proteins 
is highlighted by the existence of viral-encoded IRF 
homologous of the host IRF, but with no function to 
circumvent the immune response [4-7]. The IRF protein 
binds to DNA by conserved N-terminal DNA binding 
domain, which is known as the interferon-stimulated 
response element (ISRE) [8]. The IRF also binds other 

transcription factors to enhance gene expression during the 
immune response.  

The Ifnb enhancer includes regulatory elements 
designated as positive regulatory domains (PRD). The 
transcription proteins consist of four positive regulatory 
domains: 1 NFkB dimer (RelA/p50), 1 AP1 complex 
(ATF2/c-Jun), and 2 heterodimers or homodimers of IRF, 
and assemble at the Ifnb promoter and promotes gene 
expression [9-14]. Some immune cells such as plasma-
cytoid dendritic cells are specialized to produce a large 
amount of IFNα. In this study, both IRF5 and IRF7 were 
expressed constitutively and played important roles in 
IFNα production [15]. In addition to antiviral immune 
response, IRF proteins could also play crucial roles in 
transcription regulations and the regulation of other 
immune responses. More importantly, IRF5 could be 
produced in different cell types such as macrophages, B 
cells, and DCs and has been associated with susceptibility 
to different autoimmune diseases [16]. 
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Because of its cytotoxic effects, IFNα was used in 
chemotherapy for cancer patients. However, this treatment 
resulted in some serious side effects, such as lupus-like 
symptoms [17]. Prolonged treatment may lead to autoi-
mmune disorders including Grave’s disease, autoimmune 
thyroiditis, autoimmune hepatitis, rheumatoid arthritis 
(RA), insulin-dependent diabetes mellitus (IDDM), 
vasculitis, and polymyositis [18, 19]. The IFNα signature 
was reported in various autoimmune disorders such as 
systemic lupus erythematosus (SLE) and RA [20]. One of 
the genes that control IFNα is IRF5, which is also 
upregulated and activated by IFNα in positive feedback 
and can induce the expression of apoptotic genes and 
inflammatory factors that result in autoimmunity [21, 22]. 
Tumor necrosis factor (TNF)-α is another important 
proinflammatory cytokine which is regulated by IRF5 [23, 
24]. TNFα is described as the most important inflammatory 
cytokine in the RA joint that induces cartilage damage [25]. 

SLE is described as a heterogeneous autoimmune 
inflammatory disease that results in different clinical 
phenotypes in patients. The antinuclear antibodies (ANA) 
are detected in most patients and recognize the chromatin 
components such as double-stranded DNA, nucleosomes, 
and histones that break self-tolerance, resulting in 
autoimmune responses [26]. SLE patients also have an IFN 
signature that correlates with disease severity, and high 
levels of IFNα have been detected during the peak of the 
disease [27, 28].  

RA is also a chronic autoimmune inflammatory disease 
that primarily targets the synovial joints. RA joints are 
characterized by a massive infiltration of leukocytes in 
synovium that result in chronic inflammation and joint 
damage due to cartilage destruction [29, 30]. RA synovium 
contains a variety of activated leukocytes and a wide range 
of inflammatory molecules such as proinflammatory 
cytokines including interleukin (IL)-1b, TNFα, and IL-6 
that result in chronic inflammation [31]. IRF5 is one of the 
most important regulatory factors in TNF-α and IFN-α 
production and is also important in the pathogenesis of 
both RA and SLE.  

This paper discusses the function and regulation of IRF5 
in autoimmunity as well as the role of single nucleotide 
polymorphisms (SNPs) at the Irf5 gene locus in the context 
of rheumatoid arthritis and systemic lupus erythematosus. 
These SNPs could enhance IRF5 expression which also 
regulates and induces inflammatory responses in autoi-
mmune diseases. The therapeutic strategies based on IRF5 
targeting were also analyzed.  

IRF5 Gene structure, processing, and regulation 
IRF5 is located on chromosome 7q32 which includes 9 

coding exons plus 1 noncoding exon in the 5՛ untranslated 
region (UTR). The IRF5 gene has 3 variants of exon 1 (1A, 
1B, 1C) that encode alternative promoters (P-V1, P-V2, P-
V3) upstream of the start codon in exon 2. The IRF5 
transcript splicing with 3 alternative transcript start sites 
and different variants with multiple exon combinations 
lead to 9 IRF5 transcript variants with different expression 
states in various cell types. IRF5-v1, IRF5-v2, and IRF5-

v3/v4 are expressed in plasmacytoid dendritic cells and 
macrophages; however, IRF5-v5 and IRF5-v6 are 
expressed in human primary peripheral blood mononuclear 
cells (PBMCs). Other variants are only detected by 
polymerase chain reaction (PCR) analysis in cancer cell 
lines [32]. Different variant combinations were detected in 
autoimmune disease compared with healthy donors, which 
highlights the importance of gene expression and proc-
essing in such diseases [33]. As a result of the alternative 
splicing pattern, IRF5 transcript variants exhibit distinctive 
insertion/deletion patterns in exon 6. Because of two 
constitutively active 3՛ acceptor splice sites, 48 bp insertion 
in exon 6 (known as SV-16) consists of IRF5-v1 and v5. In 
addition, v1, v3, and v4 have other forms of in-frame 
deletion (known as indel-10) in exon 6. However, these 
indels could be at risk in autoimmune diseases by altering 
the functional activity of IRF5 [34]. The IRF5 proteins also 
need phosphorylation events to obtain an active form [35]. 
The IRF5-v3 transcript has an IRF-binding site that binds 
IRF9 and implies the regulation of IRF5 by other IRF 
family members [32]. IRF5 expression also induces after 
granulocyte macrophage-colony stimulating factor (GM-
CSF) stimulation in vitro, which reveals the signal 
transducer and activator of the transcription (STAT) 
regulation procedure in IRF expression [23, 36, 37]. Other 
different transcription factors, including PU.1, AP1, PAX5, 
TCF12, p53, EBF, Myc, IRF4, and NFkB, could also 
regulate IRF5 expression [38]. Consisting of CpG islands 
that span the IRF5 promoter region is another important 
regulatory factor in IRF5 gene expression [39]. The CpG 
islands are enriched for the Sp1 binding site; in turn, Sp1 
also recruits other proteins that are needed for transcription 
[40]. The CpG islands produce a basal level of transcription 
and offer an opportunity for rapid expression in immune 
responses [41]. Methylation of this region leads to the 
silencing of IRF5 expression in some contexts, such as T 
cells during immune responses [16]. The epigenetic 
alteration was seemingly unimportant in such autoimmune 
disease, but more studies are need in this field [42, 43].  

Polymorphism of IRF5 gene 
Genome-wide association studies (GWASs) are useful 

tools for comparing genome sequences in healthy persons 
and patients to identify gene mutations that alter the risk of 
diseases. Various SNPs in the IRF5 gene have been 
reported, and in some cases functional differences or 
different expression levels were also reported [44, 45]. In 
many GWASs, the association between IRF5 polymo-
rphisms and predisposition to various autoimmune disea-
ses has been reported. For example, rs2004640 and 
rs2280714 SNPs were reported to be risk factors for 
systemic sclerosis [46, 47], rs77571059 is associated with 
Sjӧgren’s syndrome [48], and rs3807306 and rs4728142 
SNPs are associated with MS [49]. These SNPs are 
correlated with poor pharmacologic responses in MS 
patients [50]. The rs2004640 and rs3757385 SNPs are 
associated with RA pathogenesis [51-53]. The rs2004640, 
rs10488631, rs77571059, and rs10954213 were assoc-
iated with increased risk of SLE in patients [54]. Most of 
these alleles could regulate the differentiation of T cells 

 
 2           Rheumatology Research, Vol. 6, No. 1, January. 2021 

Ebrahimiyan et al.



IRF5 in RA and SLE   

toward TH1/17/2, are responsible for immune-related 
disorders, and also highlight again the function of IRF5 in 
inflammation and autoimmunity [55].  

One of the most common polymorphisms in the IRF5 
gene locus is rs2004640 in the promoter region of IRF5 and 
2bp downstream of exon 1B. Here, the T risk allele causes 
the splicing of exon 1B to exon 2. When the protective G 
allele exists, the splice junction is not recognized, and that 
leads to nonsense-mediated decay [56, 57]. This SNP 
enhances the expression of v2 and v9, whereas exon 1A is 
prominent, as usual. The SNPs could increase the risk of 
autoimmunity by producing greater amounts of IRF5 and 
IFNα [54, 58]. It has been revealed that some immune cells 
such as DCs and macrophages that have this SNP produce 
more inflammatory cytokines, including IL-12p40, TNFα, 
IL-8, and IL-1β [59]. The other common SNP is 
rs77571059 which is located 64 bp upstream of exon 1A 
and described as the CGGGG indel. This polymorphism 
resulted in an extra binding site for Sp1 which leads to 
more expression of IRF5 [52]. The functional rs10954213 
is also reported in autoimmune diseases. The A risk allele 
causes polyA site creation, resulting in a shorter 3՛UTR and 
long half-life of IRF5 [60]. The rs10488631 SNP that 
seems to be more related in autoimmune diseases is located 
4 kb upstream of the 3՛end of Irf5 locus [61]. The C risk 
allele results in IRF5 upregulation and more IFNα 
production [54, 58]. However, the contribution of this SNP 
in autoimmune diseases needs to be more closely 
investigated (Table 1).  

IRF5 target genes 
The cDNA microarray was used to detect different 

genes regulated by IRF5 [62]. IRF5 induces various 
important inflammatory genes during the immune resp-
onse, including IFNα and IFNβ genes, cytokine and 
chemokine genes like CCL3 (chemokine (C-C motif) 
ligand 3), CCL4, CCL5, CCL6, MIP-1α (macrophage 
inflammatory proteins), and MIP-1β. The genes which 
participate in cell cycle regulation, cell adhesion, ubiquitin-
dependent pathway of degradation, and some pro-apoptotic 
genes were upregulated by IRF5. IRF5 enhances the 
expression level of different transcription factors and RNA 
binding proteins such as poly(A) poly-merase, poly(C)-
binding protein, KH domain RNA-binding protein, 
helicase DEAE box 18, fragile X mental retardation gene, 
PAI-1 (plasminogen activator inhibitor-1), STAT1 (signal 
transducer and activator of transcription 1), STAT3, 
STAT5b, and also other members of IRF like IRF1 and 
IRF8, gene encoding cellular chaperones like heat shock 
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proteins that are important in antiviral and stress immune 
responses  [15, 62-66].  IRF5 could  induce  the  potent 
monocyte  chemoattractant  such  as  MCP-1,  I-309 and 
initiate the macrophage inflammatory response [66].

  Dysregulation  of  these  cytokines  is  reported  in  many 
inflammatory disorders and autoimmune diseases such as 
SLE, RA, Sjogren’s syndrome, and multiple sclerosis (MS)
[67-72].  Thus,  upregulation  of  IRF5 may  result  in 
inflammation and the development of such disorders.

IRF5 and immune receptor signaling
  Toll-like  receptors  (TLRs)  play  important  roles  in 

immune  responses.  Stimulatory  molecules  such  as 
pathogen-associated  molecular  patterns  (PAMPs)  or 
damage-associated molecular patterns (DAMPs) presented 
by  bacteria,  fungi,  protozoa,  viruses,  and  damaged  cells 
including lipopolysaccharides (LPS), flagellin, peptidogly-
cans  (PGN),  lipopeptides,  unmethylated  CpGs,  ssRNA,
and dsRNA could activate TLRs and initiate the immune 
response.  Many  adaptor  proteins  are  activated  in  the 
downstream  signaling  of  TLRs.  Eleven  members  of  this 
family have been recognized in mammals [73, 74]. Various 
types  of  TLRs  could  recognize  different  PAMPs  and 
DAMPs, but all of them activate three major downstream 
pathways, i.e. the NF-кB, MAPK, and IRF pathways [63,
75].  Stimulation  of TLR3, TLR5, TLR7,  and TLR9 with 
their  ligands  on  DCs  and  macrophages  leads  to  IRF5 
expression  and  activation  [63, 76].  In  viral  immune 
responses,  pDCs produce a large amount of IFNα due to 
constitutively  high  expression  levels  of TLR7 and TLR9 
which are correlated with IRF5 expression. The silencing 
of IRF5 by siRNAs disrupts TLRs signaling and reduces 
the  expression  of  IFNα/β and  other  pro-inflammatory 
molecules  such  as  TNFα, IkBζ, CXCL2,  IL-6,  and  IL-
12p40 [15, 63, 77-79]. In addition to TLR signaling, other 
immune  receptors  could  enhance  IRF5 signaling  in 
immune  cells.  Fas  and  TNF-related  apoptosis-inducing 
ligand  (TRAIL)  stimulation  also  activates  IRF5,  which 
leads  to  apoptosis  and  is  more  specific  to  activated 
dendritic cells [80]. Signaling from intracellular receptors 
such  as  nucleotide-binding  oligomerization  domain-
containing  protein  (NOD)2,  a  member  of  NOD-like 
receptors (NLRs), through the ligands muramyl dipeptide 
(MDP) or PGN could promote IRF5 expression [81]. The 
other immune receptor, such as Dectin-1, also induce IRF5 
signaling  after  stimulation  with  b1,3-glucans  in  immune 
cells  against  intracellular  bacterial  and  fungal  pathogens
[82] (Figure 1).



IRF5 in RA and SLE    

 
Figure 1. Signal transduction pathways that employ interferon regulatory factor 5 (IRF5). 
MDP, Muramyl dipeptide; PGN, peptidoglycan; TLRs, Toll-like receptors; IKKs, IkB kinases; RIPs, Ribosome-inactivating proteins; 
IRAKs, interleukin-1 receptor associated kinase; TBKs, TANK-binding kinase 1; CpG, Cytosine-phosphate-guanosine-
deoxynucleotides. 

 
IRF5 and apoptosis regulation 
Many studies have revealed the importance of apoptosis 

in the initiation and maintenance of SLE. Increased 
apoptosis rates have been reported in various SLE cells 
such as lymphocytes, neutrophils, and monocytes [83-85]. 
Under normal conditions, apoptotic debris is removed by 
phagocytosis, but an increased rate of apoptosis could 
impair this mechanism and release nuclear antigens that 
may lead to an autoimmune response, especially in SLE 
[86]. Increased apoptosis promotes the inflammatory 
response, releases cytokines and chemokines, and triggers 
more inflammation in these patients [87-89].  

Recent studies have revealed that IRF5 can regulate cell 
growth and apoptosis [64]. Increased apoptosis induction 
has also been reported in other members of the IRF family, 
including IRF1 and IRF3 [90-93]. IRF5 is upregulated by 
tumor suppressor gene P53 in response to DNA damage 
and triggers apoptosis [94]. Some other proteins such as 
cyclin-dependent kinase inhibitor p21cip1/waf1 and pro-
apoptotic genes including Bax, Bak1, caspase 8, and DAP 
kinase-2 are upregulated in response to IRF5 and lead to 
apoptosis in damaged cells. However, anti-apoptotic 
proteins like cyclin B1 and CDK1, which prolonged cell 
life, were suppressed by IRF5 [64]. After IFNα stimulation, 
IRF5 was upregulated, leading to P21 upregulation and cell 
cycle arrest. Overexpression of IRF5 leads to cell cycle 
arrest and apoptosis in B cell lymphoma independent of 
P53 [62]. IFNα is used in chemotherapy in cancer patients 
to arrest the cell cycle and trigger apoptosis. Such cytotoxic 
effects could be triggered by the upregulation of IRF5 in 
these cells.  

IRF5 and rheumatoid arthritis (RA) 
RA is a chronic autoimmune disease with more 

incidence in women and at older ages [95]. The target 
tissue in these patients is the synovial joints. RA joints are 
characterized by leukocyte infiltration and chronic 
inflammation, which lead to irreversible joint damage [29, 
30]. Multiple genetic and epigenetic factors play important 
roles in a person’s predisposition to RA. The human 
leukocyte antigen (HLA) is one of the important genes in 
the immune response. The HLA-DRB1*01 and *04 alleles 
strongly increase the risk of RA and are also associated 
with greater bone damage and disease severity [96, 97].  

In addition to HLA, multiple polymorphisms in Irf5 
locus have been associated with RA severity. The 
rs2004640 and rs3757385 SNPs have been reported in RA 
patients [51-53]. However, some studies have reported that 
the correlation between bone erosion and IRF5 SNPs is not 
clear [51, 98]. It is possible that IRF5 SNPs enhance acute 
inflammation in the early disease stage rather than systemic 
inflammation in RA. The inflamed synovium consists of 
activated immune cells including macrophages, T cells, B 
cells, and DCs. Resident tissue cells such as chondrocytes, 
synovial fibroblasts, and osteoclasts produce inflammatory 
cytokines and play pivotal roles in joint destruction [99]. 
RA synovial fluid consists of a large number of 
inflammatory cytokines including IL-1b, TNF, IL-6, 
matrix metalloproteases MMP-1, -3, -9, -13, and chem-
okines such as IL-8, IP-10, MCP-1, and RANTES which 
result in persistent inflammation [31]. TNF is the most 
important mediator in inflamed RA joint because of its 
function in osteoclast activation and the degradation of 

 
 4           Rheumatology Research, Vol. 6, No. 1, January. 2021 

Ebrahimiyan et al.



IRF5 in RA and SLE   

bones and cartilages [25, 100]. TNF blockade also inhibits 
the production of IL-6, IL-8, and GM-CSF in inflammatory 
conditions [101, 102].  

IRF5 plays an important role in the production and 
prolonged TNF production by inflammatory macrophages 
[23, 37]. IRF5 also regulates many inflammatory genes by 
cooperating with NF-κB [103]. In mice whose Irf5 gene 
has been removed (Irf5-/-), impaired production of serum 
cytokines and resistance against lethal endotoxin shock 
have been reported [104]. In acute antigen-induced arthritis 
(AIA) in (Irf5-/-) mice, IRF5 deficiency leads to decreased 
neut-rophil infiltration and reduction of TH1/TH17 and 
Tγδ IL-17+ cells in inflamed joints. However, a collagen-
induced arthritis (CIA) model in (Irf5-/-) mice exhibited no 
difference compared to the wild type [105]. Both AIA and 
CIA are antigen-induced arthritis models, but AIA is an 
acute form in contrast to CIA that is a more systemic form 
of arthritis [106, 107]. These results imply the more 
effective role of IRF5 in the early stage of autoimmunity. 
IRF5 plays crucial roles in macrophages, and its expression 
increases during differentiation into the inflammatory 
phenotype (M1) [36, 37]. The Irf5-/- macrophages 
differentiate into anti-inflammatory phenotype (M2) and in 
Irf5-/- mice immune responses shift toward TH2 cells 
instead of TH1 and TH17 cells, which induces strong 
inflammatory immune responses [37, 106]. The ectopic 
expression of IRF5 in M2 macrophages enforces the 
expression of M1 markers such as IL-12 and IL-23 [37].  

In the context of autoimmunity and the results of mice 
models, IRF5 expression could result in RA severity and 
more inflammation in joints. The importance of macro-
phages and inflammatory cytokines in RA joints suggests 
that dampening of IRF5 could be beneficial and advise new 
avenues for the development of RA-targeted therapies. 

IRF5 AND systemic lupus erythematosus (SLE) 
SLE is an autoimmune disease with a wide range of 

clinical manifestations. SLE could be a facial butterfly rash 
(malar rash) or a systemic life-threatening clinical pheno-
type such as nephritis [108]. SLEs like RA have more 
incidence in women, and most patients have ANA that 
recognizes self-double-stranded DNA, nucleosomes, and 
histones, which could break self-tolerance as an important 
mechanism in autoimmune diseases. ANA has also been 
detected in a variety of autoimmune disorders such as 
Sjӧgren’s syndrome, systemic sclerosis, and RA [26]. In 
addition to ANA, SLE patients have an IFN signature 
which correlates with disease severity, and the serum levels 
of IFNα are increased during the peak of the disease [26, 
27]. IFNα-associated genes also have increased expression 
in PBMCs of SLE patients [20].  

Genetic factors also play important roles in SLE 
predisposition. Several genes such as HLA, Ptpn22, Stat4, 
and importantly Irf5 gene locus, have been reported in the 
context of SLE. The rs2004640 SNP has been shown to 
have the strongest association with SLE risk in worldwide 
cohorts [57, 61, 109, 110]. Some other studies have 
revealed a significant association between rs77571059 
promoter indel upstream of exon 1A and SLE risk in 

patients [52, 109]. The rs10488631 SNP located 4 kb 
downstream of gene locus has also been associated with 
SLE risk in patients [61]. rs2004640, rs10488631, 
rs77571059, and rs10954213 increase the risk of SLE by 
elevating the level of IRF5 expression in patient monocytes 
[54]. IRF5 expression correlates with IFNα expression as a 
key characteristic of SLE. Monocytes derived from SLE 
patients express more pro-inflammatory cytokines such as 
IFN, IL-6, and TNF. These cytokines are important in SLE 
pathogenicity [111].  

The important roles of IRF5 in SLE risk could be 
highlighted by mice models of SLE, in which the 
lymphocyte activation was decreased and more differen-
tiation toward TH2 rather than TH1 was seen. That 
correlates with decreased expression levels of IL-12, IL-
23, and IFNα, which leads to SLE disease pathogenesis 
[112]. Downregulation of chemokine receptors CXCR4 
and CCR2 was a key element in monocyte attraction 
observed in these models [113]. The SLE (Irf5-/-) mice 
models also showed reduced immunoglobulin G (IgG) 
class switching in B cells, which correlates with SLE 
pathogenesis [114]. The SLE (Irf5-/-) mice experienced a 
low level of B cell maturation and plasma cell differen-
tiation due to decreased Prdm1 (BLIMP1) expression as a 
key regulator of plasma cell commitment factor and IRF5 
targeted genes [115]. Reduced levels of mature B cells and 
antibody-producing cells lead to a low level of antibody 
production and ANA immune complex formation which 
have an important impact on the etiology and pathology of 
SLE. 

In conclusion, SNP in IRF5 seems to increase the 
expression level of IRF5 and its target genes, including 
IFNα, which was a key factor in SLE pathogenesis. IRF5-
targeted therapy could be one of the beneficial tools to 
control SLE severity in patients. 

Current therapies in IRF5 inhibition  
IRF5 is a key regulator of macrophage activation which 

could lead to the polarization of macrophages towards the 
M1 phenotype [24]. Because upregulation of IRF5 results 
in M1 phenotype, lipidoid nanoparticles loaded by siRNA 
were delivered to silence IRF5 in infiltrated macrophages 
in spinal cord injury wounds. IRF5 downregulation results 
in changing M1 to M2 phenotype, which leads to decreased 
inflammation, reduced demyelination and neurofilament 
loss, and better locomotor function [116]. In another study, 
siRNA silencing led to decreased post-MI heart failure in 
coronary ligation [117]. In the severe acute pancreatitis 
mouse model, high expression levels of IRF5, iNOS, 
TNFα, and IL10 have been shown in M1 macrophages. The 
siRNA could have repolarized the macrophages to M2 
phenotype and decreased the inflammation in the pancreas 
environment [118]. In a mouse model of neuropathic pain, 
using gene therapy with homing peptide siRNA-IRF5 com-
plexes in microglia cells resulted in decreased neuropathic 
pain [119]. Another interesting method for inhibiting IRF5 
expression is using an AAG-rich microsatellite DNA-
mimicking oligodeoxynucleotide designated as MS19, 
which results in the downregulation of iNOS, IL6, and 
TNFα along with the inhibition of IRF5 nuclear 
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translocation in cells [120]. Another study used the natural 
polyphenol mangiferin that is a component of Mangifera 
indica Linn. This product resulted in a reduction of IRF5 
and pro-inflammatory cytokines, but the exact mechanism 
was not clear [121]. 

New strategies in IRF5 targeting 
Some other members of IRF could regulate the 

expression of others such as IRF-1/IRF2 and IRF4/IRF5 
[32, 122-126]. It is clear that IRF4 can bind the same region 
of MyD88 as IRF5 does [127]. In an Irf4-/- mice model, 
IRF5 dependent genes were upregulated after TLR 
stimulation. However, the alteration of an individual mem-
ber of IRF could be nonspecific because of the cell type-
dependent expression pattern of IRF members. Some 
studies have used this method to regulate IRF expression. 
In cancer cells, upregulation of IRF1 (an antagonist of 
IRF2) results in the downregulation of IRF2 [128]. 
Similarly, the upregulation of IRF4 could decrease the 
expression of IRF5 which leads to switching pro-
inflammatory conditions to anti-inflammatory ones. How-
ever, this change could impact other signaling pathways 
based on cell type and results in the development of other 
diseases. The important challenge to this therapy is cell 
type-specific manner targeting [124, 127, 129]. SIK2 has 
been reported as a negative regulator of IL-12 and TNFα 
with an unknown mechanism that can reduce inflamm-
ation. Herein, SIK2 is a negative regulator of IRF5 that can 
induce an anti-inflammatory response. Thus, it may be 
defined as a candidate for the inhibition of inflammation 
and autoimmunity [130]. The other positive regulatory 
proteins are IKKβ, IRAK1/4, and TRAF6 which could be 
targeted to inhibit IRF5 activity. These enzymes could be 
easy targets for a therapeutic strategy, because all enzymes 
have an activity site and are more accessible for low 
molecular weight compounds to inhibit the activation. 
Another manner is targeting phosphatases such as alkaline 
phosphatase or A20 molecules, which would result in the 
deactivation of IRF5 [131, 132]. However, the inhibition of 
kinases, phosphatases, and ligases is note specific for IRF5 
and could make a global change in cellular behavior and 
protein expression. The same hypothesis is also true about 
using co-activators that interact with IRF5, including 
CBP/p300 and GCN/PCAF that they are not specific for 
only IRF5 protein. Some viruses encode the viral proteins 
that are homologous to IRF (vIRF), such as Kaposi’s 
sarcoma-associated herpesvirus and rhesus monkey 
rhadinovirus [124, 133, 134]. These viral proteins act as 
antagonists of IRF and inhibit the immune response. Some 
of these proteins do not have a DNA binding domain and, 
after homo- or hetero-dimerization with wild-type IRF, 
inhibit their interaction with DNA and inhibit the activity 
of IRF. However, C-terminal deletion mutants directly bind 
DNA and inhibit wild-type IRF [129, 135]. Other viral 
proteins also inhibit IRF by inducing its degradation [136]. 
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These  proteins  or  a  specific  sequence  of  them  could  be 
helpful in inhibiting IRF in a therapeutic target.

  Some  strategies  have  been  developed  based  on  these 
findings. The novel peptide inhibitors have been developed 
using  specific  sequences  within  the  IRF5 gene.  These 
peptides target the sequence inside the endogenous IRF and 
inhibit dimerization with other proteins as well as the full 
activation  of  IRF  [137].  Other  peptides  which  are  cell-
permeable,  bind  to  the  full-length  IRF,  and  inhibit  its 
function and cytokine production have also been developed 
[138]. These new strategies provide specific ways for IRF5 
targeting  which enhance  the  inhibition  of  IRF5 function 
and introduce the therapeutic method independent of cell 
types and pathway of activation.

Conclusion____________________________
  Identification of the IRF5 gene as an important factor in 

proinflammatory  cytokine  production and immune  
response  regulation  has  driven  studies  to  investigate  this 
factor as a genetic risk factor in autoimmune diseases and 
inflammatory  disorders. Any  mechanisms  that  lead  to  a 
higher level of IRF5 expression can induce the expression 
of cytokines such as IL-6, IL-12, and TNFα that results in 
the  activation  of  the  immune  response.  Beyond  this 
understanding, IRF5-based therapy is a beneficial strategy,
and  specific  targeting  of  this  transcription  factor  could 
overcome  the  problems  related  to off-target  effects  of 
treatments. One off-target and general therapy is anti-TNF 
that  is  useful  in  autoimmunity.  However,  blocking  TNF 
activity  is  not  a  completely  curative  therapy,  and  it  has 
many unwanted effects, because the immune system needs 
this agent as an important factor in the immune response.
Although  complete  blocking  of  IRF5 as  a  transcription 
factor is challenging in disease treatment, IRF5 regulation 
might  reduce  the  immune  response  in  autoimmune 
diseases.

  In conclusion, more studies are needed to investigate the 
IRF5 targeting therapy in inflammation and autoimmunity 
as a new specific therapy.
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